Една от опциите е да използвате нещо като следната функция, която превръща локална рамка от данни в отдалечена рамка с данни с помощта на SQL дори когато използвате връзка само за четене .
df_to_pg <- function(df, conn) {
collapse <- function(x) paste0("(", paste(x, collapse = ", "), ")")
names <- paste(DBI::dbQuoteIdentifier(conn, names(df)), collapse = ", ")
values <-
df %>%
lapply(DBI::dbQuoteLiteral, conn = conn) %>%
purrr::transpose() %>%
lapply(collapse) %>%
paste(collapse = ",\n")
the_sql <- paste("SELECT * FROM (VALUES", values, ") AS t (", names, ")")
temp_df_sql <- dplyr::tbl(conn, dplyr::sql(the_sql))
return(temp_df_sql)
}
Ето илюстрация на използваната функция. Функцията е тествана на PostgreSQL и SQL Server, но няма да работи на SQLite (поради липса на VALUES
ключова дума, която работи по този начин). Вярвам, че трябва да работи на MySQL или Oracle, тъй като те имат VALUES
ключова дума.
library(dplyr, warn.conflicts = FALSE)
library(DBI)
pg <- dbConnect(RPostgres::Postgres())
events <- tibble(firm_ids = 10000:10024L,
date = seq(from = as.Date("2020-03-14"),
length = length(firm_ids),
by = 1))
events
#> # A tibble: 25 x 2
#> firm_ids date
#> <int> <date>
#> 1 10000 2020-03-14
#> 2 10001 2020-03-15
#> 3 10002 2020-03-16
#> 4 10003 2020-03-17
#> 5 10004 2020-03-18
#> 6 10005 2020-03-19
#> 7 10006 2020-03-20
#> 8 10007 2020-03-21
#> 9 10008 2020-03-22
#> 10 10009 2020-03-23
#> # … with 15 more rows
events_pg <- df_to_pg(events, pg)
events_pg
#> # Source: SQL [?? x 2]
#> # Database: postgres [[email protected]/tmp:5432/crsp]
#> firm_ids date
#> <int> <date>
#> 1 10000 2020-03-14
#> 2 10001 2020-03-15
#> 3 10002 2020-03-16
#> 4 10003 2020-03-17
#> 5 10004 2020-03-18
#> 6 10005 2020-03-19
#> 7 10006 2020-03-20
#> 8 10007 2020-03-21
#> 9 10008 2020-03-22
#> 10 10009 2020-03-23
#> # … with more rows