PostgreSQL
 sql >> база данни >  >> RDS >> PostgreSQL

Обобщена заявка за 50M+ таблица с редове в PostgreSQL

Първа стъпка:извършете предварително агрегиране в подзаявката:

EXPLAIN
SELECT cal.theday, act.action_name, SUM(sub.the_count)
FROM generate_series(current_date - interval '1 week', now(), interval '1 
day') as cal(theday) -- calendar pseudo-table
CROSS JOIN (VALUES
        ('page_open')
        , ('product_add') , ('product_buy') , ('product_event')
        , ('product_favourite') , ('product_open') , ('product_share') , ('session_start')
        ) AS act(action_name)
LEFT JOIN (
        SELECT es.action_name, date_trunc('day',es.date_update) as theday
                , COUNT(DISTINCT es.id ) AS the_count
        FROM event_statistics as es
        WHERE es.client_id = (SELECT c.id FROM clients AS c
                        WHERE c.client_name = 'client name')
        AND (es.date_update BETWEEN (current_date - interval '1 week') AND now())
        GROUP BY 1,2
        ) sub ON cal.theday = sub.theday AND act.action_name = sub.action_name
GROUP BY act.action_name,cal.theday
ORDER BY act.action_name,cal.theday
        ;

Следваща стъпка:поставете VALUES в CTE и се обърнете към него също в обобщената подзаявка. (печалбата зависи от броя имена на действия, които могат да бъдат пропуснати)

EXPLAIN
WITH act(action_name) AS (VALUES
        ('page_open')
        , ('product_add') , ('product_buy') , ('product_event')
        , ('product_favourite') , ('product_open') , ('product_share') , ('session_start')
        )
SELECT cal.theday, act.action_name, SUM(sub.the_count)
FROM generate_series(current_date - interval '1 week', now(), interval '1day') AS cal(theday)
CROSS JOIN act
LEFT JOIN (
        SELECT es.action_name, date_trunc('day',es.date_update) AS theday
                , COUNT(DISTINCT es.id ) AS the_count
        FROM event_statistics AS es
        WHERE es.date_update BETWEEN (current_date - interval '1 week') AND now()
        AND EXISTS (SELECT * FROM clients cli  WHERE cli.id= es.client_id AND cli.client_name = 'client name')
        AND EXISTS (SELECT * FROM act WHERE act.action_name = es.action_name)
        GROUP BY 1,2
        ) sub ON cal.theday = sub.theday AND act.action_name = sub.action_name
GROUP BY act.action_name,cal.theday
ORDER BY act.action_name,cal.theday
        ;

АКТУАЛИЗАЦИЯ:използването на физическа (временна) таблица ще доведе до по-добри оценки.

    -- Final attempt: materialize the carthesian product (timeseries*action_name)
    -- into a temp table
CREATE TEMP TABLE grid AS
(SELECT act.action_name, cal.theday
FROM generate_series(current_date - interval '1 week', now(), interval '1 day')
    AS cal(theday)
CROSS JOIN
    (VALUES ('page_open')
        , ('product_add') , ('product_buy') , ('product_event')
        , ('product_favourite') , ('product_open') , ('product_share') , ('session_start')
        ) act(action_name)
    );
CREATE UNIQUE INDEX ON grid(action_name, theday);

    -- Index will force statistics to be collected
    -- ,and will generate better estimates for the numbers of rows
CREATE INDEX iii ON event_statistics (action_name, date_update ) ;
VACUUM ANALYZE grid;
VACUUM ANALYZE event_statistics;

EXPLAIN
SELECT grid.action_name, grid.theday, SUM(sub.the_count) AS the_count
FROM grid
LEFT JOIN (
        SELECT es.action_name, date_trunc('day',es.date_update) AS theday
                , COUNT(*) AS the_count
        FROM event_statistics AS es
        WHERE es.date_update BETWEEN (current_date - interval '1 week') AND now()
        AND EXISTS (SELECT * FROM clients cli  WHERE cli.id= es.client_id AND cli.client_name = 'client name')
        -- AND EXISTS (SELECT * FROM grid WHERE grid.action_name = es.action_name)
        GROUP BY 1,2
        ORDER BY 1,2 --nonsense!
        ) sub ON grid.theday = sub.theday AND grid.action_name = sub.action_name
GROUP BY grid.action_name,grid.theday
ORDER BY grid.action_name,grid.theday
        ;

Актуализация №3 (съжалявам, създавам индекси на базовата таблица(и) тук, ще трябва да редактирате. Премахнах и колоните с една колона на клеймото за време)

    -- attempt#4:
    -- - materialize the carthesian product (timeseries*action_name)
    -- - sanitize date interval -logic

CREATE TEMP TABLE grid AS
(SELECT act.action_name, cal.theday::date
FROM generate_series(current_date - interval '1 week', now(), interval '1 day')
    AS cal(theday)
CROSS JOIN
    (VALUES ('page_open')
        , ('product_add') , ('product_buy') , ('product_event')
        , ('product_favourite') , ('product_open') , ('product_share') , ('session_start')
        ) act(action_name)
    );

    -- Index will force statistics to be collected
    -- ,and will generate better estimates for the numbers of rows
-- CREATE UNIQUE INDEX ON grid(action_name, theday);
-- CREATE INDEX iii ON event_statistics (action_name, date_update ) ;
CREATE UNIQUE INDEX ON grid(theday, action_name);
CREATE INDEX iii ON event_statistics (date_update, action_name) ;
VACUUM ANALYZE grid;
VACUUM ANALYZE event_statistics;

EXPLAIN
SELECT gr.action_name, gr.theday
            , COUNT(*) AS the_count
FROM grid gr
LEFT JOIN event_statistics AS es
    ON es.action_name = gr.action_name
    AND date_trunc('day',es.date_update)::date = gr.theday
    AND es.date_update BETWEEN (current_date - interval '1 week') AND current_date
JOIN clients cli  ON cli.id= es.client_id AND cli.client_name = 'client name'
GROUP BY gr.action_name,gr.theday
ORDER BY 1,2
        ;
                                                                        QUERY PLAN                                                                        
----------------------------------------------------------------------------------------------------------------------------------------------------------
 GroupAggregate  (cost=8.33..8.35 rows=1 width=17)
   Group Key: gr.action_name, gr.theday
   ->  Sort  (cost=8.33..8.34 rows=1 width=17)
         Sort Key: gr.action_name, gr.theday
         ->  Nested Loop  (cost=1.40..8.33 rows=1 width=17)
               ->  Nested Loop  (cost=1.31..7.78 rows=1 width=40)
                     Join Filter: (es.client_id = cli.id)
                     ->  Index Scan using clients_client_name_key on clients cli  (cost=0.09..2.30 rows=1 width=4)
                           Index Cond: (client_name = 'client name'::text)
                     ->  Bitmap Heap Scan on event_statistics es  (cost=1.22..5.45 rows=5 width=44)
                           Recheck Cond: ((date_update >= (('now'::cstring)::date - '7 days'::interval)) AND (date_update <= ('now'::cstring)::date))
                           ->  Bitmap Index Scan on iii  (cost=0.00..1.22 rows=5 width=0)
                                 Index Cond: ((date_update >= (('now'::cstring)::date - '7 days'::interval)) AND (date_update <= ('now'::cstring)::date))
               ->  Index Only Scan using grid_theday_action_name_idx on grid gr  (cost=0.09..0.54 rows=1 width=17)
                     Index Cond: ((theday = (date_trunc('day'::text, es.date_update))::date) AND (action_name = es.action_name))
(15 rows)



  1. Database
  2.   
  3. Mysql
  4.   
  5. Oracle
  6.   
  7. Sqlserver
  8.   
  9. PostgreSQL
  10.   
  11. Access
  12.   
  13. SQLite
  14.   
  15. MariaDB
  1. Как безопасно да избягвате произволни низове за SQL в PostgreSQL с помощта на Java

  2. Десетична стойност в Postgresql, върната като низ в Node.js

  3. Свързване на pgadmin към postgres в докер

  4. Граници на думите на PostgreSQL Regex?

  5. SQL:Групирайте подобни стойности на колона B, но подредете по колона A