MongoDB
 sql >> база данни >  >> NoSQL >> MongoDB

Mongo / Mongoose - Агрегиране по дата

Един добър подход би бил да се раздели сборният тръбопровод на няколко стъпки с цел изчисляване на агрегатите с всяка група, т.е. годишни, месечни и седмични агрегати.

Направих слаб опит да генерирам споменатия тръбопровод, но не съм сигурен дали това е, което търсите, но бих могъл да ви дам някои насоки за решение, още по-добре оптимално. Може би някой друг може да даде по-добър отговор.

Помислете за следното непроверено тръбопровод:

db.statements.aggregate([
    {
        "$group": {
            "_id": {
                "name": "$name",
                "year": { "$year": "$date" },
                "month": { "$month": "$date" },
                "week": { "$week": "$date" }
            },
            "total": { "$sum": "$amount" }
        }
    },
    {
        "$group": {
            "_id": {
                "name": "$_id.name",
                "year": "$_id.year"
            },
            "YearlySpends": { "$push": "$total" },
            "totalYearlyAmount": { "$sum": "$total" },
            "data": { "$push": "$$ROOT" }
        }
    },
    { "$unwind": "$data" },
    {
        "$group": {
            "_id": {
                "name": "$_id.name",
                "month": "$data._id.month"
            },
            "YearlySpends": { "$first": "$YearlySpends" },
            "totalYearlyAmount": { "$first": "$totalYearlyAmount" },
            "MonthlySpends": { "$push": "$data.total" },
            "totalMonthlyAmount": { "$sum": "$data.total" },
            "data": { "$push": "$data" }
        }
    },
    { "$unwind": "$data" },
    {
        "$group": {
            "_id": {
                "name": "$_id.name",
                "week": "$data._id.week"
            },
            "YearlySpends": { "$first": "$YearlySpends" },
            "totalYearlyAmount": { "$first": "$totalYearlyAmount" },
            "MonthlySpends": { "$first": "$MonthlySpends" },
            "totalMonthlyAmount": { "$first": "$totalMonthlyAmount" },
            "WeeklySpends": { "$push": "$data.total" },
            "totalWeeklyAmount": { "$sum": "$data.total" },
            "data": { "$push": "$data" }
        }
    },
    { "$unwind": "$data" },
    {
        "$group": {
            "_id": "$data._id",
            "YearlySpends": { "$first": "$YearlySpends" },
            "totalYearlyAmount": { "$first": "$totalYearlyAmount" },
            "MonthlySpends": { "$first": "$MonthlySpends" },
            "totalMonthlyAmount": { "$first": "$totalMonthlyAmount" },
            "WeeklySpends": { "$first": "$WeeklySpends" },
            "totalWeeklyAmount": { "$first": "$totalWeeklyAmount" }
        }
    }
])

Примерен резултат

/* 1 */
{
    "_id" : {
        "name" : "Tesco",
        "year" : 2017,
        "month" : 3,
        "week" : 11
    },
    "YearlySpends" : [ 
        -3.3
    ],
    "totalYearlyAmount" : -3.3,
    "MonthlySpends" : [ 
        -3.3
    ],
    "totalMonthlyAmount" : -3.3,
    "WeeklySpends" : [ 
        -3.3
    ],
    "totalWeeklyAmount" : -3.3
}

/* 2 */
{
    "_id" : {
        "name" : "RINGGO",
        "year" : 2017,
        "month" : 4,
        "week" : 17
    },
    "YearlySpends" : [ 
        -3.3, 
        -26.3, 
        -33.3
    ],
    "totalYearlyAmount" : -62.9,
    "MonthlySpends" : [ 
        -33.3
    ],
    "totalMonthlyAmount" : -33.3,
    "WeeklySpends" : [ 
        -33.3
    ],
    "totalWeeklyAmount" : -33.3
}

/* 3 */
{
    "_id" : {
        "name" : "RINGGO",
        "year" : 2017,
        "month" : 3,
        "week" : 12
    },
    "YearlySpends" : [ 
        -3.3, 
        -26.3, 
        -33.3
    ],
    "totalYearlyAmount" : -62.9,
    "MonthlySpends" : [ 
        -3.3, 
        -26.3
    ],
    "totalMonthlyAmount" : -29.6,
    "WeeklySpends" : [ 
        -3.3
    ],
    "totalWeeklyAmount" : -3.3
}

/* 4 */
{
    "_id" : {
        "name" : "RINGGO",
        "year" : 2017,
        "month" : 3,
        "week" : 11
    },
    "YearlySpends" : [ 
        -3.3, 
        -26.3, 
        -33.3
    ],
    "totalYearlyAmount" : -62.9,
    "MonthlySpends" : [ 
        -3.3, 
        -26.3
    ],
    "totalMonthlyAmount" : -29.6,
    "WeeklySpends" : [ 
        -26.3
    ],
    "totalWeeklyAmount" : -26.3
}

/* 5 */
{
    "_id" : {
        "name" : "Sky",
        "year" : 2017,
        "month" : 3,
        "week" : 9
    },
    "YearlySpends" : [ 
        -63.3
    ],
    "totalYearlyAmount" : -63.3,
    "MonthlySpends" : [ 
        -63.3
    ],
    "totalMonthlyAmount" : -63.3,
    "WeeklySpends" : [ 
        -63.3
    ],
    "totalWeeklyAmount" : -63.3
}

/* 6 */
{
    "_id" : {
        "name" : "Amazon",
        "year" : 2017,
        "month" : 3,
        "week" : 12
    },
    "YearlySpends" : [ 
        -61.3
    ],
    "totalYearlyAmount" : -61.3,
    "MonthlySpends" : [ 
        -61.3
    ],
    "totalMonthlyAmount" : -61.3,
    "WeeklySpends" : [ 
        -61.3
    ],
    "totalWeeklyAmount" : -61.3
}

АКТУАЛИЗАЦИЯ

Ако желаете да включите филтри в обобщената операция, предлагам ви да използвате $match заявка като първи етап на конвейер. Въпреки това, ако има начален $match стъпка, тогава предходните стъпки ще бъдат леко променени, тъй като ще събирате филтрирани резултати, много различно от първоначалното събиране на всички документи като цяло и след това прилагане на филтъра върху резултатите.

Ако трябва да вземете първо филтър-след това агрегат маршрут, обмислете изпълнението на обобщена операция, която използва $match като първа стъпка, която филтрира документите по доставчик, след това предходен $redact тръбопроводна стъпка за допълнително филтриране на документите в частта за месеца от полето за дата и след това останалото ще бъде $group етапи:

Statements.aggregate([
    { "$match": { "name": req.params.vendor } },
    {
        "$redact": {
            "$cond": [
                { "$eq": [{ "$month": "$date" }, parseInt(req.params.month) ]},
                "$$KEEP",
                "$$PRUNE"
            ]
        }
    },
    .....
    /*
        add the remaining pipeline steps after
    */
], function(err, data){
    if (err) throw err;
    console.log(data);
})

Ако трябва да вземете група-първо-после-филтър маршрут, тогава филтърът ще бъде след последния конвейер, който дава групирания резултат, но приложен към различни полета, тъй като документите надолу по тази част от потока ще бъдат различни от оригиналната схема.

Този маршрут не е ефективен, тъй като започвате обобщената операция с всички документи в колекцията и след това филтрирате след това:

Statements.aggregate([
    .....
    /*
        place the initial pipeline steps from 
        the original query above here
    */
    .....
    { 
        "$match": { 
            "_id.name": req.params.vendor,
            "_id.month": parseInt(req.params.month)
        } 
    }
], function(err, data){
    if (err) throw err;
    console.log(data);
})

За множество параметри на филтър за дата, $redact операторът ще бъде

{
    "$redact": {
        "$cond": [
            {
                "$and": [
                     { "$eq": [{ "$year": "$date" },  parseInt(req.params.year)  ]},
                     { "$eq": [{ "$month": "$date" }, parseInt(req.params.month) ]},
                     { "$eq": [{ "$week": "$date" },  parseInt(req.params.week)  ]}
                ]
            },
            "$$KEEP",
            "$$PRUNE"
        ]
    }
}



  1. Redis
  2.   
  3. MongoDB
  4.   
  5. Memcached
  6.   
  7. HBase
  8.   
  9. CouchDB
  1. Как мога да изтегля поддокументи от масив?

  2. Spring Data Mongo изглежда игнорира хоста в XML конфигурация

  3. Ограничаване на размера на съхранение в MongoDB?

  4. Изпълнение на множество заявки в mongo`

  5. Как може Python да наблюдава промените в Oplog на Mongodb